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We consider the topological characteristics of the spin-
orbital coupling particles loaded in one-dimensional (1D)
optical superlattices subject to the Zeeman field. The phase
shift of the superlattice provides a virtual dimension which
allows us to simulate two-dimensional topological phases
with a physically 1D system. The system possesses a variety
of quantum phase transitions over a large parametric space
and two important topological phases, namely, quantum
anomalous Hall (QAH) and quantum spin Hall (QSH)
phases are found to coexist in the system, but they reside
in different bandgaps. This new category of gap-dependent
QAH–QSH insulator paves the way for the possible obser-
vation of the coexistence of QSH and QAH effects at one
platform. © 2018 Optical Society of America
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The quantum spin Hall (QSH) effect [1–4] and quantum
anomalous Hall (QAH) effect [5,6] are both fundamental trans-
port processes arising from the nontrivial topological order.
Traditionally, a QSH insulator is considered to be protected
by the time-reversal-symmetry (TRS), with a pair of spin-
polarized states counter-propagating on the sample edge. In con-
trast, the QAH effect requires the breaking of TRS, which is
induced by internal magnetization and spin orbital coupling
(SOC). The mechanisms of QSH and QAH are separately well
established; however, manifesting these two topological effects
simultaneously in one system is rather difficult, due to the
dilemma of protecting or breaking TRS. Nevertheless, a very
recent investigation reveals that a QSH state could survive in
a TRS-broken system [7] until the exchange field is over a
critical value, at which the bulk bandgap closes and reopens.
The discovery of this TRS-broken QSH effect conquers the
difficulty of presenting a QSH and QAH state in one device.

Ultracold atoms in optical lattices are widely used in con-
densed matter physics to investigate the strongly correlated
many-body interaction processes [8,9] and topological insula-
tors [10,11]. When particles are loaded in the optical potential
with a commensurate or incommensurate period, the system
may possess a topological insulator phase such that localized edge
states occur within the bandgap [12,13]. Furthermore, the
realization of the effective SOC in cold atoms [14–16] and
the dynamics of spin particles in the Zeeman field [17,18], as
the readily modified parameters, open intriguing possibilities
to control the versatile topological phases with more adjustable
degree of freedoms. Although the topological phases are thought
to be limited in two-dimensional (2D) systems [19,20], it has
been shown both theoretically and experimentally that one-di-
mensional (1D) optical potentials support such topological
properties [21–23]. Thus, a 1D system offers a very simple,
yet powerful, means to probe the topological phases of the
higher-dimension systems, and the reduction of the dimension
simplifies the experimental designs [24].Motivated by these pro-
gresses, here we propose an applicable platform to investigate
QSH and QAH by trapping spin particles in 1D optical lattice
subject to the Zeeman field.

Thus, we show in this Letter a quantum anomalous Hall-
quantum spin Hall (QAH-QSH) insulator, namely the coex-
istence of QAH and QSH in a 1D optical superlattice. The
superlattice is characterized by a phase shift that acts as a virtual
dimension such that the 1D structure could be mapped onto
a 2D system with intriguing topological edge states. Different
from the previously reported quantum spin-quantum anoma-
lous Hall insulator, where the QAH and QSH occur within the
same bandgap [25,26], the QAH and QSH in our system are
found to occur in separated bandgaps, namely gap-dependent,
by which our scheme avoids the particle energy degeneracy
and makes it more feasible for the possible experimental
observation.

We consider trapping spin particles in 1D optical potentials,
with the Hamiltonian described by
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with
V i � V cos�2πωi � δ�: (2)

Here N is the number of the lattice sites, σy and σz are Pauli
matrices, V is the potential strength with the rational period
1∕ω, δ is the phase shift accounting for displacement of the
potential, the operators cσ†i , cσi (σ � α; β. α, β denotes the
spin-up and spin-down component, respectively) are the crea-
tion and annihilation spin-dependent operators with spin σ on
the ith sites, the hopping amplitude between the nearest cites
t is set to be the unity (t � 1), Ω characterizes Zeeman split-
ting, and λ is the strength of the SOC term. The basic scheme is
shown in Fig. 1. In the following, we assume that the nth
eigenstate of the spinor is given by jψσ

ni �
P

iu
σ
i;nc

†
iσj0i, such

that the original eigenvalue equation H jψσ
ni � Enjψσ

ni is now
represented by two coupled Harper equations:

−�uα;βi�1;n � uα;βi−1;n� � �V cos�2πωi � δ� � Ω�uα;βi;n

	 λ�uβ;αi�1;n − u
β;α
i−1;n� � Eα;β

n uα;βi;n ; (3)
where uσi;n is the amplitude of the spin particle wave function at
the ith site with V i the on-site diagonal potential, and Eσ

n de-
notes the nth spin particle eigenenergy. For simplicity, we only
consider V i � V cos�2πωi � δ� with rational ω � p∕q (p, q
are integers prime to each other), i.e., a commensurate potential
so that the Bloch theory applies to the particle states. For such
periodic potential, the wave functions have the Bloch form
uσi�q � eikquσi . Considering the Bloch state uσj � eikjϕσ

j �k�
for jkj ≤ π∕q, Eq. (3) can be derived as
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On account of ϕσ
j�q�k� � ϕσ

j �k�, solving the harper equation
[Eq. (4)] can be simplified by solving the eigenvalue equation
MΦ � EΦ, where Φ � �ϕα

1 ; 
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q ;ϕ

β
1; 
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q�T andM is a
2q × 2q matrix. The band splits into 2q subbands, correspond-
ing to 2q − 1 bulk energy gaps. Under the open boundary
condition, we find that the edge states emerge in the bandgaps.
The number of the edge states in the gap regime is defined by
the gap Chern number [27], which will be introduced in the
next section.

As seen from Eq. (4), the 1D superlattice itself has two good
quantum numbers k and δ; mathematically, the equation de-

scribing this 1D model is essentially equivalent to the Harper
equation describing the electron hopping in a 2D periodic po-
tential in a uniformmagnetic field [28], except that the role of ky
in that true 2D system is played by δ in 1D chain. Since a Chern
number can characterize that 2D system, then, formally, a Chern
number can also characterize our system. The edge states gen-
erally arise at the boundary of the bulk systems of the nontrivial
topological phase, and the number of edge states is directly
linked to the gap Chern number, a topological invariant that
involves integration over the occupied bands in the momentum
space. An effective Brillouin zone with respect to the Bloch vec-
tor k and potential shift δ (a virtual dimension) forms a T 2 torus.
Adiabatically varying δ and k on the torus, one gets a manifold of
HamiltonianH �k; δ� in the parametric space. For the eigenstates
ϕ�k; δ� of the Hamiltonian H �k; δ�, the Berry connection is de-
fined as Ak;δ � ihϕ�k; δ�j∂k;δjϕ�k; δ�i. The Chern number of
the mth bandgap Cm is given as the sum of the Chern numbers
of the occupied bands [21,29]:

Cm � 1

2π

Xm
n�1

Z
2π∕q

0

dk
Z

2π

0

dδ�∂kAδ − ∂δAk�: (5)

However, matrix σz in the Hamiltonian [Eq. (1)] breaks the
spin SU�2� symmetry. The Bloch Hamiltonian H �k; δ� �
H��k; δ� ⊕ H −�k; δ� displays the upper and lower bands sep-
arated by an insulating gap, where H	�k; δ� denotes the fiber
bundle slashed into two nontrivial parts. As a consequence,
the definition of the Chern number in Eq. (5) is invalid to re-
present the number of edge states, because spin operator sz is no
longer a good quantum number due to spin mixing caused by
the SOC term and Zeeman field [30]. To calculate the spin
Chern number, we follow the procedure [30,31], where matrix
σ̂z is constructed and diagonalized for the occupied states
hϕm�k; δ�jσ̂z jϕn�k; δ�i (m, n are the band indices of occupied
states at each k and δ). Here, we use the spin-up or spin-
down eigenvectors jψ	i of the matrix σ̂z , which denote the
occupied states projected into the spin-up and spin-down
manifolds as ϕ	�k; δ� � hψ	�k; δ�jϕ�k; δ�i. In addition,
we can define the corresponding Berry connection A	

k;δ �
ihϕ	�k; δ�j∂k;δjϕ	�k; δ�i, and the spin-up and spin-down
Chern number Cm

	. Note that such defined Chern number
Cm

	 is a topological invariant, as it is robust against continuous
deformations of the Hamiltonian. Hence, the spin Chern num-
ber [25] Cm

s � 1
2 �Cm� − Cm

− � is a well-defined topological invari-
ant [32]. However, neither Cm or Cm

s can make a complete
description of the topological property in our system.
Therefore, the topological invariants are codetermined by com-
bining Cm and Cm

s as a Chern number pair �Cm; Cm
s � [33].

Corresponding to the bulk-edge corresponding theory, the first
number of the Chern number pair, Cm, denotes the counts of
the chiral edge states with the same propagation direction in the
mth bandgap, and the second number Cm

s of the Chern number
pair represents the number of the helical edge states. Therefore,
�Cm; Cm

s � � �Cm ≠ 0; 0� represents the QAH phase, where
chiral edge states (the number of which is jCmj) appear, whereas
�Cm; Cm

s � � �0; 1� represents QSH phase where helical edge
states emerge. Of course, �Cm; Cm

s � � �0; 0� represents a nor-
mal insulate (NI) phase where no types of edge states exist.
Hence, such a definition of the Chern number pair provides
a complete description on the topological properties of each
bandgap in our system.

Fig. 1. Schematic layout of the potential and coupling fields.
An ultracold gas of spin particles (blue and red balls) is prepared in
a 1D optical lattice with a period q and a depth V . A spin-independent,
staggered, Zeeman field Ω detunes one particle of the spin pair from
the other. The hopping term t and the SOC term λ represent the inter-
actions between the nearest spin pairs.
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The dependence of the energy spectrum of Hamiltonian
[Eq. (1)] on potential period ω � p∕q (limited in the [0,1] in-
terval) is shown in Fig. 2, which shows a butterfly-like structure.
Note that the spectrum exhibits a multigap structure, resulting
from the combined actions of the underlying quasiperiodic po-
tential, Zeeman field, and SOC effects. Interestingly, near the
period ω � 1∕3, one additional gap emerges (indicated with
the red square in Fig. 2). As will be discussed below, this addi-
tional gap is of the QSH phase, while the other two lower or two
upper gaps are of QAH phases. We should mention that the
number/size of these gaps and topological properties could be
readily tuned by the SOC and Zeeman field amplitude.

Figure 3 presents the band structure of the commensurate
potential under the open boundary condition against the
virtual dimension δ. Without loss of the generality, here we
present our idea on the intuitively most transparent case at
ω � 1∕3 and vary δ from 0 to 2π. The lines connecting

the separated bands in Fig. 3 are the evidence of the edge states.
With the variation of the Zeeman field strength Ω, some bands
collapse, undergo a metal (M) phase, and then reopen, leading
to a phase transition of the associated gap. Such a phase tran-
sition is well captured by the variation of either component in
the Chern number pair �Cm; Cm

s �, as indicated in each gap in
Fig. 3. Obeying the bulk-edge correspondence principle, the
change of Chern number is accompanied with the emergence
or elimination of specific edge states, as seen in Fig. 3. To be
specific, considering the Chern number pair for the third and
fourth (or second) gap, in Fig. 3(b) and Fig. 3(e), respectively,
�C4; C4

s � changes from (2, 0) in Fig. 3(b) to �−1; 0� in Fig. 3(e),
corresponding to the number of chiral states changing from 2
to 1. (Here the sign of the Chern number stands for the propa-
gation direction of the associated edge state along the virtual
dimension.) Meanwhile, �C3; C3

s � changes from �0; 1� into
�0; 0�, corresponding to the pair of helical states changing from
1 into 0. The Chern number pair for the first and fifth gaps
remains unchanged from Figs. 3(b)–3(e), telling that the topo-
logical phases for these two gaps are maintained, as evidenced
by the preservation of one chiral edge state. Finally, we mention
that the transition phase could be either metal or semi-metal.
The latter occurs when the gap closes at some critical point of
the potential phase shift; see one example in Fig. 3(f ), where
two pairs of neighbor band touch each other at Dirac points.

The aforementioned identification in the topological phase
for each gap fully coincides with the characteristics of their
associated edge states. For example, in the gap of a QSH phase,
as shown in Fig. 3(b), there exist four different edge modes
labeled by A, B, C, and D. Modes A and C reside at the right
boundary of the superlattice, while modes B and D reside at the
left boundary [Fig. 4(a)]. One finds that the edge states at the
same boundary feature opposite spin-polarization and opposite
group velocity with respect to the virtual dimension δ. The
existence of such a pair of helical edge states is a hallmark
of QSH. In contrast, in the gap of a QAH phase, at the same
boundary edge, modes propagate toward one direction (no
counter-propagating modes occur at the same boundary)
[Fig. 4(b)]. By varying the parameter δ and performing
spin-resolved density measurements [34], the corresponding
topological phase can be identified.

Not only can the Zeeman field readily tune the topological
phase of the structure as discussed above, but also the SOC
provides an equally efficient way for their phase control. To
clarify the intrinsic richness of topological phase transitions,

Fig. 2. Butterfly energy spectra with respect to potential period ω �
p∕q varying from 0 to 1 under a periodic boundary condition, here
potential depth V � 1.5, the number of sites N � 200, SOC term
λ � 0.6, and Zeeman field strength Ω � 0.6. (Dimensionless units
are used throughout this Letter.) The blank areas with wing shapes
represent the bandgap regimes. The blank area in the red square in-
dicates the QSH phase, while the other gaps stand for QAH phases.

Fig. 3. Energy spectra versus phase δ under open boundary condi-
tion at potential depths V � 1.5, SOC term λ � 0.3, and period
ω � 1∕3. From (a) to (e): Zeeman field Ω � 0.3; 1.0; 1.6; 2.0; 2.7.
The numbers in the brackets denote the Chern number pair for
the respective bandgaps. (f ) Semi-metal phase with the parameters
λ � 0.58 and Ω � 1.5.

Fig. 4. Eigenmode profile corresponding to the labels denoted on
the red dashed line in Fig. 3(b), for a QSH phase (left panel) and a
QAH phase (right panel). The red and blue lines represent the spin-up
and spin-down component, respectively.
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we introduce a phase diagram that contains topological phases
associated to all the bulk gaps. The influence of the interplay
between the Zeeman field and the SOC strength on the topo-
logical phase is systematically shown in Fig. 5. In this figure,
V � 1.5 and ω � 1∕3 are fixed, and �Cm; Cm

s � is calculated in
the interval of λ ∈ �0; 1� and Ω ∈ �0; 3�. According to the
specific values of �Cm; Cm

s �, the plane of �λ;Ω� is divided
into five different topological phase regimes: QAH −M1;2,
QAH −QSH1;2, and QAH–NI, and each of them is bounded
by a metal or semi-metal phase. The transition between these
five topological phases can be achieved by tuning λ and Ω. For
example, the phase transition shown from Figs. 3(a)–3(e) is
realized by the increasing of Ω with a fixed λ � 0.3, as indi-
cated with a dashed line in Fig. 4. However, in general, both
Zeeman and SOC could be used to tune the topological phase.
As shown in area I in Fig. 5, the system is in aQAH −M1 phase
with a metallic phase in the intermediate region, where the
Zeeman term is not strong enough to break the degeneracy of
the central bands. The system manifests QAH −QSH1 states
in area II, which sandwiches the QSH state in the two upper
and lower band QAH states, with the topological invariants
��−1; 0�; �−2; 0�; �0; 1�; �2; 0�; �1; 0��. The phase of the III(IV)
case is very similar to those of the II(I) case, except for the
change of topological invariants in the QAH regime. In the
area V, the midgap contains no edge states: it is topologically
equivalent to a QAH-NI.

In this Letter, we use a 1D superlattice to load the spin-orbit
coupling particles subject to the Zeeman field and, by virtue of
the virtual dimension provided by the phase shift of the super-
lattice, we are able to simulate the 2D topological phases in
physically 1D systems. A novel butterfly-like spectrum and in-
triguing topological phase transitions are found to occur, when
one tunes the spin-orbital coupling strengths or the Zeeman
field. Especially interesting is that we find a new category of
topological phase, named QAH–QSH insulator, where the
QAH phase and QSH phase coexist in the same system. In
contrast to the previously reported results [25,26], where these
two important topological phases locate in the same bandgap,
our scheme locates them in different bandgaps, thus avoiding
their energy degeneracy and making the scheme more attractive
for the experimental observation. Finally, we notice that
very recent experimental platforms have been put forward in
an optical lattice [35] that might be used to implement our

theoretical proposal, and our proposal may also be realized in
a synthetic frequency dimension [36]. Manipulating the spin
polarized edge states, by altering the topological phases we
revealed in this Letter, may offer a novel route to realize the
spin-based quantum computation.
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